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1 Introduction
NASA’s vision for Earth Science is to build a “sensor web”:
an adaptive array of heterogeneous satellites and other sen-
sors that will track important events, such as storms, and pro-
vide real-time information about the state of the Earth to a
wide variety of customers. Achieving this vision will require
automation not only in the scheduling of the observations
but also in the processing of the resulting data. To address
this need, we have developed a planner-based agent to au-
tomatically generate and execute data-flow programs to pro-
duce the requested data products. Data processing domains
are substantially different from other planning domains that
have been explored, and this has led us to substantially dif-
ferent choices in terms of representation and algorithms. We
discuss some of these differences and discuss the approach
we have adopted.

1.1 TOPS Case Study
As a demonstration of our approach, we are applying our
agent, called IMAGEbot, to the Terrestrial Observation
and Prediction System (TOPS, http://www.forestry.umt.-
edu/ntsg/Projects/TOPS/), an ecological forecasting sys-
tem that assimilates data from Earth-orbiting satellites and
ground weather stations to model and forecast conditions
on the surface, such as soil moisture, vegetation growth and
plant stress (Nemaniet al. 2002). Prospective customers of
TOPS include scientists, farmers and fire fighters. With such
a variety of customers and data sources, there is a strong
need for a flexible mechanism for producing the desired data
products for the customers, taking into account the infor-
mation needs of the customer, data availability, deadlines,
resource usage (some scientific models take many hours to
execute) and constraints based on context (a scientist with a
palmtop computer in the field has different display require-
ments than when sitting at a desk). IMAGEbot provides
such a mechanism, accepting goals in the form of descrip-
tions of the desired data products.

The goal of the TOPS system is the monitoring and pre-
diction of changes in key environmental variables. Early
warnings of potential changes in these variables, such as soil
moisture, snow pack, primary production and stream flow,
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could enhance our ability to make better socio-economic de-
cisions relating to natural resource management and food
production (Nemaniet al. 2000). The accuracy of such
warnings depends on how well the past, present and future
conditions of the ecosystem are characterized.

The inputs needed by TOPS include satellite data, such as
Fractional Photosynthetically Active Radiation (FPAR), and
weather data, such as precipitation. There are several poten-
tial candidate data sources for each input required by TOPS
at the beginning of each model run. The basic properties of
the inputs are listed in Table 1. Even with this fairly small
model, there is a good variety of inputs we need to select
from, depending on our goal.

In addition to the attributes listed in the table, data sources
also vary in terms of quality and availability — some in-
puts are not always available even though they should be.
For example, both the Terra and Aqua satellites have expe-
rienced technical difficulties and data dropouts over periods
ranging from few hours to several weeks. Depending on the
data source, different processing steps are needed to get the
data into a common format. We have to convert the point
data (CPC and Snotel) to grid data, which by itself is fairly
complex and time-consuming, and we must reproject grid
data into a common projection, subset the dataset from its
original spatial extent and populate the input grid used by
the model. The data are then run through the TOPS model,
which generates desired outputs. TOPS provides only a sim-
ple illustration of the potential problems, and is less complex
than many other models and systems in the Earth sciences,
some of which take dozens of different inputs, with sizes
reaching into terabytes for each model run.

The next section discusses the Data Processing Action
Description Language (DPADL), which is used to to de-
scribe the complex data structures, constraints and programs
that arise in data processing domains. DPADL is an ex-
pressive, declarative language with Java-like syntax, which
allows for arbitrary constraints and embedded Java code.
Section 3 discusses our constraint-based planner, which ac-
cepts goals in the form of data descriptions and synthesizes
data-flow programs using the DPADL action descriptions.
The constraint solver can handle numeric and symbolic con-
straints, as well as constraints over strings and even arbitrary
Java objects. The latter are evaluated by executing the code
embedded in constraint definitions, specified in the DPADL
input file. Additionally, it can solve a limited class of univer-



Source Variables Frequency Resolution Coverage
Terra-MODIS FPAR/LAI 1 day 1km, 500m, 250m global
Aqua-MODIS FPAR/LAI 1 day 1km, 500m, 250m global

AVHRR FPAR/LAI 10 day 1km global
SeaWIFS FPAR/LAI 1 day 1km x 4km global

DAO temp, precip, rad, humidity 1 day 1.25 deg x 1.0 deg global
RUC2 temp, precip, rad, humidity 1 hour 40 km USA
CPC temp, precip 1 day point data USA

Snotel temp, precip 1 day point data USA
GCIP radiation 1 day 1/2 deg continental

NEXRAD precipitation 1 day 4 km USA

Table 1: TOPS input data choices

sally quantified constraints (Golden & Frank 2002). Section
4 discusses related work.

2 DPADL Language
In the course of developing IMAGEbot, we found that ex-
isting action representation languages were inadequate for
describing data processing domains. To address these de-
ficiencies, we developed a new language called DPADL,
for Data Processing Action Description Language (Golden
2002). DPADL provides features tailored for data process-
ing domains, such as:

• First-class objects: Most things in the world and in soft-
ware environments can be viewed as objects with cer-
tain attributes and relations to other objects. For exam-
ple, a file has a name, host, parent directory, owner, etc.
Even more importantly, data files often have complex data
structures. The language should provide the vocabulary
for describing these structures. DPADL is an object-
oriented language, with a syntax based on Java and C++.

• Constraints: Determining the appropriate parameters for
an action can be challenging. Parameter values can de-
pend on other actions or objects in the plan. The lan-
guage should provide the ability to specify such con-
straints where they are needed. DPADL supports built-
in and user-defined constraints over any type, including
strings and Java objects, and universally quantified con-
straints over sets.

• Integration with a run-time environment: It is not suffi-
cient to generate plans; it is necessary to execute them,
so there must be a way to describe how to execute the
operations provided by the environment and obtain in-
formation from the environment. The language should
allow the specification of “hooks” into the runtime envi-
ronment, both to obtain information and to initiate oper-
ations. DPADL provides these hooks by permitting em-
bedded Java code in definitions of new constraints and
methods for executing actions. Variables used in plan-
ning and constraint reasoning can reference Java objects
as well as primitives such as integers and strings, so fine-
grained interaction with the Java runtime environment is
possible.

• Object creation and copying: Many programs create new
objects, such as files, sometimes by copying or modifying

other objects. The language must provide a way of de-
scribing such operations. DPADL allows effects to create
new objects, which optionally may be declared as copies
of existing objects, in which case it is only necessary to
list the ways in which the objects differ; all other attributes
are inherited from the preexisting object.

• Operations on large or infinite sets: Many programs act on
all members of some set. For example, a backup operation
acts on all files on a disk and an image processing opera-
tion may affect all pixels in an image, in a specified region
of an image, or matching a specified criterion. The lan-
guage should support universal quantification to describe
such operations. DPADL provides universally quantified
goals and effects, even when the sets quantified over are
infinite.

For an illustration of how these language elements interact,
we consider the representation of mosaic tiles in DPADL.
Many satellites continuously image whatever portion of the
Earth they pass over, like giant hand-held scanners. For con-
venience, the resulting “swath” data is usually reprojected
into onto a 2D “map” and chopped up into “tiles,” corre-
sponding to a regular grid drawn over the map. To obtain
the data pertaining to a particular region of the Earth, we
first identify and obtain the tiles that cover that region and
then combine them into a single image, known as a mosaic,
and crop away the pixels outside the region of interest.

We represent these tiles in the planner as first-class ob-
jects. These objects have attributes describing, among other
things, the physical measurement the data in the tile repre-
sent, the position of the tile on the grid, the projection used
to flatten the globe, and the region of the Earth covered by
the pixels in the image. One of the “hooks” we provide to
the runtime environment is to allow DPADL objects to rep-
resent Java objects, which we represent using the keyword
mapsto. For example,

static type Tile extends Object
mapsto tops.modis.Tile

means that the type Tile corresponds to the Java class
tops.modis.Tile. The keywordstatic means that Tile is
immutable: tiles can be created but never modified.1 The

1This was an unfortunate keyword choice, as it differs from the
Java meaning ofstatic.



opposite ofstatic is fluent . The designation of ob-
jects (or functions) as static is very useful to the planner, as
we discuss in Section 3.5.

We then need to specify how to map from the at-
tributes ofTile to the corresponding methods and fields of
tops.modis.Tile. This is a two-step process. First, we
specify some of the attributes as constraints. Then we define
the constraints using Java code that refers to the fields and
methods oftops.modis.Tile. For example, to obtain the
day attribute ofTile, we call the methodgetDay() on the
corresponding Java object:
unsigned day {

constraint {
value (this ) = $this .getDay()$;

}
}

The dollar sign is used to delimit embedded Java code. We
can also define constraints that go the other way: given
some attribute(s) of aTile, return theTile(s) with those
attributes. For example, one attribute of aTile is that it
covers a given longitude-latitude pair. Given a particular
longitude and latitude, the constraint solver can invoke a
method to find a single tile that covers it, but it can do even
better. Given a rectangular region, represented by intervals
of longitude and latitude, it can invoke a method to find a set
of tiles covering that region.

boolean covers(float lon, float lat) {
constraint {

. . .
// returns the set of tiles covering
// a given lon/lat range.
{this }([lon], [lat], d=day, y=year,

p=product, value )
= {$ if (value)

return tm.getTiles(lon.max,
lat.min,
lon.min,
lat.max,
d, y, p);

else return null ; $};
}

}

The syntax used in this example is unimportant. What
it means is “given an interval over longitude, an interval
over latitude and single values for the day, year, and prod-
uct (measurement type), invoking the methodtm.getTiles
will return the set of tiles matching those criteria.”

As the above examples illustrate, the universe is very large
and incompletely known. Most of the “sensing” needed by
the planner can be handled transparently through constraint
execution, but because many of the constraints are one-way
(e.g., we can obtain the day for a given tile, but not the set
of tiles for a given day), the planner needs to be able to rea-
son about information that is not currently known but will
become known. This essentially dictates a first-order repre-
sentation.

In addition to being large and unknown, the universe is
dynamic. Most data-processing actions produce new ob-
jects, often by copying and modifying existing objects. We

Figure 1: The IMAGEbot development environment, run-
ning as a jEdit plugin. The frame on the left shows one of the
files comprising the TOPS domain description. The frame
on the upper right shows an abstracted view of a plan for the
selected goal. More detailed views can also be shown.The
frame on the lower right is the data returned by the TOPS
server after executing the plan.

describe actions that create new objects using the keyword
new. To state that one object is obtained by copying another,
we use the keywordcopyof . For example, to describe the
effect of an actionreproject that changes the projection of
its inputtileIn to newProjection, we write:

new Tile tileOut copyof tileIn {
projection = newProjection;

}

Although tileOut is a completely distinct object from
tileIn, we do not specify all the attributes oftileOut, only
those that differ fromtileIn.

3 Planning in the Large

Data processing has traditionally been automated by writ-
ing shell scripts. There are some situations when scripts are
the best approach: namely, when the same procedure is to
be applied repeatedly on different inputs, the environment
is fairly stable and there are few choices to be made. How-
ever, in many applications, including TOPS, none of these
assumptions holds. There are many different data products
we would like the system to produce, there are many inputs
and data-processing operations to choose from in produc-
ing those products, and the availability of these inputs can
change over time. Additionally, the domain lends itself to
planner-based automation; it has precisely characterized in-
puts and outputs and operations whose effects can also be
precisely characterized. However, there are significant dif-
ferences between Earth Science data processing and more
traditional planning domains, which calls for different tech-
niques. Notable features of data processing domains include
large dynamic universes, large plans, incomplete informa-
tion and uncertainty.



3.1 Decisions, decisions
As we discussed in Section 1.1, we have a number of data
sources to choose from, which are applicable under differ-
ent circumstances. Data sources include several satellites,
ground stations, and outputs from other models, forecasts
and simulations.

In addition to input choices, we also have several choices
of models to use with the data. As with the data, the mod-
els produce results of various quality, resolution, and ge-
ographic extent. Moreover, there may sometimes be sig-
nificant trade-offs in performance versus precision. An
FPAR/LAI algorithm provides a good example of this trade-
off. We can produce an FPAR/LAI pixel using either a
lookup tableO(1), or a radiative transfer method,O(nlogn)
(Knyazikhin et al. 1999). The radiative transfer method
provides better results, but can take substantially more time.
Depending on whether time or accuracy is more important,
either method may be preferred.

Another reason for using different models at different
times is their possible regional character. Some models are
highly specialized and provide very good and precise results
in only certain parts of the world. This is partially due to
the fact that the scientists who develop these models have a
great deal of knowledge about specific geographic area (Pa-
cific Northwest, the Amazons, etc.). They have collected
large amounts of local data over the years, and were able to
develop models whose outputs are highly accurate in these
regions. We usually don’t want to use these models when
we are concerned with global monitoring, but they are use-
ful when we have identified an important event occurring at
the region where we have a very accurate regional model.

3.2 Large dynamic universes
In the last decade, the tide in the planning community has
shifted from lifted action representations to ground represen-
tations, thanks largely to the success of planners like Graph-
plan (Blum & Furst 1997) and HSP (Bonet & Geffner 2001)
and to the benchmark planning domains made possible by
the International Planning Competition. The simple fact is
that, at least for these benchmark domains, planners that use
ground actions are faster. There has been recent progress
(Younes & Simmons 1998) in applying some of the lessons
learned from these planners to speed up planners that use
lifted actions, but today the fastest planners all use ground
actions.

However, there are planning problems for which it is not
possible to use ground actions, for example, when not all
members of the universe are known at planning time. This
is trivially true in information integration domains, such as
(Knoblock 1996) and (Etzioni 1996), where the job of the
planner is to construct a plan to consult multiple informa-
tion sources, such as databases or web sites, in order to an-
swer a query. In such domains, virtually no members of the
universe may be known to the planner at the time of plan
generation.

In data processing domains, too, it is impossible to iden-
tify in advance all objects in the universe. Furthermore, most
actions create new objects, so the universe is not even static.
An examination of the planning problems from the Third

International Planning Competition (IPC3) reveals that even
the hard problems typically have fewer than 100 objects to-
tal. In contrast, if we consider a single product from a single
instrument (MODIS) on a single satellite (say, Terra) for a
single day, there are 288 tiles. To produce a given data prod-
uct, we may need to consider multiple products from multi-
ple instruments, residing on multiple satellites, and multiple
days’ worth of data.

While the details of the specific files to process could be
abstracted away in some cases, such an approach is not ro-
bust. Particular files may need special processing that other
files do not. Sometimes needed files are missing, and substi-
tutes from other sources must be obtained.

Even worse, files are not the smallest unit of granularity;
they have sub-structure. For example, image-processing ac-
tions act on pixels in the image — either all pixels or a subset
determined by some selection criteria. Again, this detail can
sometimes be abstracted away, but not always. Additionally,
many actions take numeric and string arguments. Appropri-
ate values for these arguments may be determined through
constraint reasoning, but there is no way to list all possible
valuesa priori. The sheer volume of possible actions makes
a grounded representation unsuitable.

Although we cannot use a grounded representation, we
would still like to benefit from some of the techniques that
have been developed over the past ten years. As we discuss
in Section 3.5, we adopt a lifted variant of a relaxed plan-
graph analysis, combined with a constraint-based search.

3.3 Large plans
Large universes, combined with universal quantification,
can lead to large plans. Earth-Science data processing is
very data intensive; producing a single data product can
easily require processing hundreds or thousands of files.
However, complexity need not grow according to plan size.
Whereas traditional benchmark planning problems involve
a lot of interactions, making the difficulty of planning ex-
ponential in the size of the plans produced, data-processing
domains are “embarrassingly parallel.” Except for competi-
tion for resources such as memory and CPU, the processing
required for one mosaic tile does not interfere with the pro-
cessing for another tile. Indeed, even operations on individ-
ual pixels tend to be independent of operations on adjacent
pixels. This parallelism is manifest in the structure of the
data-flow plans, which tend to be shallow but bushy, with
many instances of the same actions operating on different in-
puts. Even though actions do not directly interfere with each
other, there may be constraints between parameter values
that arise when planning with a lifted representation. The
sub-problems corresponding to the parallel branches of the
plan are not truly independent until values for these shared
variables have been chosen. Making these choices early thus
increases parallelism, at the possible cost of premature com-
mitment.

We have an even more powerful weapon to combat com-
plexity: the use of first-order representations at every stage
of the planning process, including constraint reasoning.
Given an “embarrassingly” parallel planning problem, it is
often possible to construct a very compact plan with sim-
ple loops that iterate over, say, all tiles matching a given



set of criteria. To facilitate the detection of independence
among actions and subgoals, we exploit the fact that certain
types are labeled as “static,” or immutable. Detecting inde-
pendence among actions that produce only static objects is
trivial — unless one directly or indirectly supports the other,
they are independent.

3.4 Incomplete information and uncertainty
There has been considerable work in planning under incom-
plete information and uncertainty. However, it is worth-
while to compare and contrast data processing domains with
other domains that involve incomplete information. In clas-
sical planning domains that involve uncertainty and sensing,
such as the infamous bomb-in-the-toilet domain, all possi-
ble worlds are explicitly enumerated, which facilitates the
case analysis necessary to solve these problems. Enumerat-
ing just the objects in a single world, let alone all possible
worlds, is infeasible in data processing domains. Even the
knowledge-based representation of (Petrick 2002), which
does not rely on enumerating possible worlds, assumes the
objects in the universe are fixed and constant across all pos-
sible worlds. In fact, the objects in the universe are not even
constant for a single world – over time, objects are both
created and destroyed. We adopt the Local Closed-World
(LCW) reasoning introduced in (Etzioni, Golden, & Weld
1997) to efficiently reason about incomplete information in
the face of very large universes. In IMAGEbot, we deal with
three different kinds of uncertainty, and each is handled dif-
ferently:

• Unknown information that must be known by the agent
in order to complete the plan: For example, the infor-
mation may be used to provide the value of a variable,
or select among alternative actions. This information is
sensed, not through explicit sensing actions but through
the evaluation of constraints, which in turn causes code to
be executed to obtain the correct values. For example, if
we want to know the mosaic tiles providing a given mea-
surement for a particular region, we can evaluate the con-
straint associated with the relationtile.covers(lon, lat) for
specified intervals oflon andlat. That, in turn, causes the
Java method getTiles to be called, which connects to the
TOPS sever to obtain the appropriate set of tiles. In con-
trast to (Golden 1998), this approach cannot handle sens-
ing actions with preconditions, because the constraints are
always applicable, limited only by knowledge of the rele-
vant variable domains. On the other hand, it affords great
versatility in the manner in which information is gathered.

• Unknown information that need not be known by the
agent in order to complete the plan: For example, if the
user requests a file that contains gridded evening tempera-
ture values for Montana at 8 km resolution, and the agent
has gridded temperatures for the western US at 1 km res-
olution, it need only select the appropriate subset of the
data and reduce the resolution. Even though the agent
never knows what the actual temperature values are, it can
be confident that the file it returns to the user contains the
requested information. In this sense, it is analogous to
conformant planning, i.e., producing a plan that is guar-
anteed to work in any possible state of the world, without

knowing the actual state. In fact, the metadata reason-
ing that the planner employs is remarkably similar to the
case analysis employed by conformant/contingent plan-
ners. In order to represent that a data file contains specific
information, such as temperatures, we rely on metadata
formulas (Golden 2000), first-order descriptions of infor-
mation sources that describe data contents in terms of the
information about the world contained in the data.

• Uncertainty in how well the values stored in the data files
represent the physical variables they are supposed to rep-
resent: Although it is tempting to represent these uncer-
tainties in terms of probability distributions, the probabil-
ities are unknown, even to the scientists who are experts
in the field. Instead, we represent these uncertainties in an
ad hoc manner, in terms of “data quality.”A priori qual-
ity values can be assigned to data from different sources,
modified by information known about specific data files.
For example, satellite data have quality assurance flags,
reporting problems such as cloud cover, “dead detectors,”
and values that are outside the expected bounds. Ad-
ditionally, various processing operations can affect data
quality, which we can express in terms of a mathemati-
cal relationship between the quality of the input and the
quality of the output.

3.5 Planning approach
Planning is a two-stage process. The first stage consists of a
Graphplan-style reachability analysis, (Blum & Furst 1997)
used to derive heuristic distance estimates for the second
stage, a constraint-based search. These stages are not en-
tirely separate, however; constraint propagation occurs even
in the the graph-construction stage, and the graph is refined
during the constraint-search phase.

Lifted planning graphs Although our planning graph ap-
proach is inspired by Graphplan, there are a number of sig-
nificant differences that arise from the nature of the planning
domains we are interested in:

• Nodes in the graph are lifted, and each node may rep-
resent aset of actions or propositions of a given type.
For example, in a given layer of the graph, there might
be a single node corresponding to the action schema
“compress(file),” for a thousand different instances offile.
Nodes may be split when doing so would improve the
reachability analysis, and they may, in some cases, be
grounded, but in general there is not a one-to-one corre-
spondence between nodes in the graph and actions in the
final plan.

• Instead of the propositions of Graphplan, we haveliterals
(lifted propositions), first-ordermetadataformulas and
objects, described in Section 2. DPADL objects can be
(and usually are) static orimmutable, meaning they can be
created but never modified. From the planner’s perspec-
tive, this is very important to know, because all precondi-
tions associated with a given object must be satisfied by
effects of the same action. We cannot have one action that
creates a tile and another that changes the tile’s projection;
to obtain a different projection, the agent must produce a
new tile. From the standpoint of the planning graph, there



Figure 2: A portion of the planning graph corresponding to
a plan from the TOPS domain (Figure 1). The rectangular
nodes represent actions and the round nodes represent ob-
jects that are input/output by the actions. The labels inside
object nodes are attributes of the objects.

are two important implications: First, there is no point in
having separate nodes for the individual attributes of an
immutable object, since all attributes must be supported
by the same action. Second, no two actions can produce
the same output, so the effects an action has on its out-
put(s) can never interfere with the effects of other actions
(i.e., there are no mutexes). These restrictions don’t apply
to the attributes of mutable objects.

• Instead of Graphplan-style binary mutexes between ac-
tions or conditions, we have arbitrary constraints and
a constraint propagation algorithm tailored to the lifted
planning graph representation. Constraint propagation
serves two purposes: to reduce the set of ground actions
and conditions represented by nodes in the graph by re-
ducing the domains of their variables and to eliminate
nodes and arcs in the graph completely by detecting in-
consistent constraints.

• The initial graph construction is backward from the goal,
to avoid adding irrelevant actions. Afterward, variable
bindings are propagated forward from the initial state, and
unreachable nodes are eliminated.

A portion of a lifted planning graph with object nodes is
shown in figure 2.

Constraint generation After the graph is constructed,
heuristic distance estimates for guiding the search are com-
puted, and a constraint network representing the search
space is incrementally built. It is incremental because the
planning graph comprises a compact representation of the
search space, in which each action node can represent mul-
tiple concrete actions in the final plan. Since the number of
possible actions can be large, even infinite, we cannot simply
generate all of them at once but do so lazily during search.
This is handled using a dynamic CSP (DCSP), in which new
variables and constraints can be added for each new action
and causal link in the plan.

However, it is not always necessary to ground out all of
the actions in the CSP. As discussed in (Golden & Frank
2002), our constraint reasoning techniques can handle con-
straints that include universally quantified variables, and we
use this to our advantage when solving universally quanti-
fied goals or preconditions in domains that are highly sym-
metric. For example, consider the subgoal of constructing a
mosaic, using the LAZEA projection, from all tiles covering

the continental US for a given day and satellite data product.
A precondition of themosaic action will be that the input
tiles are all in the LAZEA projection. This precondition can
be satisfied for any given tile by using thereproject ac-
tion. The representation of this in the planning graph will
look like:

Although the planner could expand the reproject node
during planning time, creating one new copy of the action
for each tile to be reprojected, in this case it won’t do so.
Rather, it will treat the action as a “loop,” iterating over all
of the tiles in a set. Since none of the actions interfere with
each other, and none of the tiles requires special treatment,
the plan for each tile is the same. The constraints generated
for this plan will be universally quantified, and the constraint
reasoning system will attempt to prove that the quantified
constraints are satisfied for all members of the domain.

Just as one node in the graph can represent multiple con-
crete actions, one concrete action can be represented by mul-
tiple nodes. That is, two nodes in the graph might actually
unify. We don’t commit at planning time to whether a condi-
tion is supported by a new or existing action, and having two
separate nodes for a given action schema (or two action vari-
ables in the constraint network) does not necessarily mean
that there are two distinct instances of that schema in the
plan. Similarly, two object variables may both designate the
same object. The burden this least commitment approach
imposes on the constraint network is an additionalO(n2)
constraints for every set ofn variables that could conceiv-
ably unify. For example, suppose we have two action vari-
ablesa1 anda2, both representing instances ofreproject,
which has one output. We will represent the output vari-
ables ofa1anda2 asa1.out anda2.out, respectively. Since
two distinct actions cannot have the same output, if both out-
puts variables are forced to codesignate (for example, be-
cause each is constrained to be the sole input of a single
concrete action), then the actions variables must also codes-
ignate:(a1.out = a2.out)⇒ (a1 = a2). Similarly, if the ac-
tions codesignate, then their corresponding inputs and pa-
rameters must also codesignate. We are exploring an alter-
native representation of these constraints that avoids explic-
itly generating allO(n2) constraints.

The constraints generated for a given planning problem
are simply a naive translation of explanatory frame axioms
corresponding to the planning problem. We have boolean
variables for all of the arcs (causal links) and conditions in
the plan. For each conditionc, we have a constraint speci-
fying that exactly one of possible causal linksl i supporting
that condition is chosen:

ImpliesXOR(c, l1, . . . , ln), i.e., c⇒ l1⊗ . . .⊗ ln

For each linkl and each conditionck that the link can sup-
port (a link can support multiple conditions when each con-
dition is an attribute of an immutable object), we have a con-
straint stating that ifl is chosen, thenckis true iff a condi-
tion ant(l ,ck), obtained by regressingckthrough the action,
is true.



Figure 3: A portion of the constraint network from the plan-
ning graph shown in Figure 2.

ImpliesEqual(l ,ant(l ,ck),ck): l ⇒ ant(l ,ck) = ck.

Conditions such asant(l ,ck), which is obtained by goal
regression, may correspond to fairly complex expressions.
These are represented in a very straightforward manner. For
example, given the expressionx = y∨ (x = 1∧ y = 2), we
introduce new boolean variablesvor, vand, veq, v1, v2, and
the following constraints

CondOr(vor,veq,vand), i.e., vor ⇔ veq∨vand
CondAnd(vand,v1,v2), i.e., vand⇔ v1∧v2
CondEqual(veq,x,y), i.e., veq⇔ x = y
CondEqual(v1,x,1), i.e., v1⇔ x = 1
CondEqual(v2,y,2), i.e., v2⇔ y = 2

Some of the constraints from the plan fragment shown in
Figure 2 are illustrated in Figure 3. Clearly, this can result
in a considerable number of variables and constraints. Be-
cause we are generating the constraints from a STRIPS-like
representation, in contrast to the Europa planner (Jönsson
et al. 2000), in which the domain modeler specifies the con-
straints for the explanatory frame axioms directly, the result-
ing constraint network is much less concise than it could be.
The impact on search is generally not a problem, since the
constraint search is strongly informed by the structure of the
plan, though when the variable-ordering heuristics do fail,
they can fail badly. More of an issue is that it can be difficult
for a domain developer to make sense of the constraints. We
are working on tools to make this job easier, and also explor-
ing ways to prune down the number of generated constraints.

The large number of boolean variables and disjunctions
can effectively put a brake on constraint propagation. In
some cases, this is desirable, as it focuses the propagation on
parts of the search space that are being explored. However,
it can also result in a rather myopic view of the CSP, where
we would prefer a more global view. Our graph-based prop-
agation algorithm effectively gets around this problem by
propagating the domains of “interesting” variables along the
structure of the planning graph, unioning the results when it
encounters a disjunction and intersecting the results when it
encounters a conjunction.

3.6 Constraint reasoning
Many algorithms and systems have been developed for solv-
ing constraint problems, ranging from simple backtracking

search algorithms to sophisticated hybrid methods. How-
ever, constraint networks with infinite domains represent
new challenges. In terms of representation, constraints can
no longer be represented extensionally as relational tables.
It is impossible to store in a computer a relation with infinite
entries. From a reasoning point of view, the conventional
search algorithms and consistency techniques cannot be ap-
plied directly. There is no way to enumerate values of an
infinite domain exhaustively. It is unknown to us whether
there is a general framework available to represent and to
solve infinite constraints problems.

As discussed in Section 3, planner variables, even univer-
sally quantified variables, can have infinite domains. Since
these variables can appear in constraints, we have imple-
mented a constraint network component capable of solv-
ing a class of constraint problems with infinite domains,
that is, universally quantified constraints obtained from sub-
goals of the planner (Golden & Frank 2002). Each vari-
able is associated with a domain. A variable domain can
be finite or infinite, in which case it is represented as an
interval (for numeric type variables), a regular expression
(for string type), or symbolic sets (for object type). The use
of regular expressions to represent string domains (Golden
& Pang 2003), and the support for universally quantified
constraints are both novel, if somewhat unorthodox, contri-
butions to constraint reasoning. The planning-graph-based
constraint propagation algorithm, described briefly above, is
also novel. The overall algorithm for solving dynamic CSPs
is based on the constraint solver used in the Europa planner
(Jönssonet al. 2000).

4 Conclusions
We have discussed a novel class of planning domains, data-
processing domains, that pose a number of challenges for
planners, including large dynamic domains, complex data
structures and complex constraints. In answer to these chal-
lenges, we have introduced the DPADL language, which
can represent complex, nested data structures, arbitrary con-
straints, object creation and copying and fine-scale integra-
tion with the Java runtime environment. We also introduced
a novel planer, called DoPPLER, which constructs dataflow
programs to produce data products satisfying user requests.
Novel features of DoPPLER include a lifted variant of the
planning graph and a constraint solver that can propagate
domain values within a planning graph and can handle uni-
versally quantified constraints. For a more detailed discus-
sion of the DPADL language or the constraint solver used
by DoPPLER, see (Golden 2003; Golden & Frank 2002;
Golden & Pang 2003).

One challenge posed by these domains that we have not
yet adequately addressed is the multi-criteria optimization
problem inherent in the tradeoff among features such as
time, resource consumption and data quality. DoPPLER
is currently quite greedy, but the next version will rely on
branch and bound, guided by bounds on variable domains
provided by our planning-graph-based constraint propaga-
tion algorithm.

DoPPLER is not a domain-dependent planner, but it is
specialized for aclassof planning domains: data-processing



domains. Even representing approximations of such do-
mains in a language such as PDDL, which assumes a closed,
static world, is a considerable challenge (Golden 2003), and
propositional planning in such domains is unthinkable. Al-
though all of the novel features of the planner were in-
troduced with data-processing domains in mind, they may
prove useful in other domains with similar characteristics.
For example, our planning graph approach may be useful
for logistics planning. Exploring these issues is the subject
of future work.

4.1 Related Work

There has been little work in planner-based automation of
data processing. Two notable exceptions are Collage (Lan-
sky & Philpot 1993) and MVP (Chienet al. 1997). Both
of these planners were designed to provide assistance with
data analysis tasks, in which a human was in the loop, di-
recting the planner. In contrast, the data processing in TOPS
must be entirely automated; there is simply too much data
for human interaction to be practical.

(Blythe et al. 2003) addresses workflow planning for
computation grids, a similar problem to ours, though their
focus is on mapping pre-specified workflows onto a specific
grid environment, whereas our focus is on generating the
workflows.

Planning for data-processing shares many characteristics
with planning for information integration and planner-based
software agents (Golden 1998). The primary difference is
the need in data-processing plans to reason about informa-
tion that will never be known to the agent but is nonetheless
essential to the task at hand — namely, the information con-
tained in the data files that the agent must process.

The Amphion system (Stickelet al. 1994) was designed
to construct programs consisting of calls to elements of a
software library. Amphion is supported by a first-order the-
orem prover. The task of assembling a sequence of image
processing commands is similar to the task Amphion was
designed to solve. However, the underlying representation
we use is a subset of first-order logic, enabling the use of less
powerful reasoning systems. The planning problem we ad-
dress is considerably easier than general program synthesis
in that action descriptions are not expressive enough to de-
scribe arbitrary program elements, and the plans themselves
do not contain loops or conditionals.
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